In the tutorial videos, where a sample is created with a 100 length, I'll bet that the 100 length is 100hex, which is 256 in decimal. 256 in decimal 2^8, 32 is 2^4, so the 32dec sample is 3 octaves away from the 256.
I have a made a spreadsheet of note frequency to various common sample speeds, and really no common sample speed will be a truly correct C when looping a single cycle. (at least not by my high school level math skills.) It may be possible with fine tuning, but even without fine tuning, you can get very close to correct tunings. (I do not know what the math is for Milkytracker fine tuning, I don't know if it's a value of cents or...)
Remember that you don't need perfect tuning to make good music. It's helpful to have it reasonably close to perfect, but perfection can be an academic distraction from creativity.
The formula that I use to calculate note sample lengths is different than the one used by Urban Soul. The formula I use may be incorrect. Samples=8363/(POWER(2,X/12)*440) where X is the number of notes distance from A4, so for middle C the value of X is -9.
midi octave note Frequency Number of samples at 8363
0 -1 C -69 8.175798916 1022.896978
1 -1 C# -68 8.661957218 965.4861816
2 -1 D -67 9.177023997 911.2976061
3 -1 D# -66 9.722718241 860.1504016
4 -1 E -65 10.30086115 811.8738691
5 -1 F -64 10.91338223 766.3068902
6 -1 F# -63 11.56232571 723.2973893
7 -1 G -62 12.24985737 682.7018262
8 -1 G# -61 12.9782718 644.384717
9 -1 A -60 13.75 608.2181818
10 -1 A# -59 14.56761755 574.0815183
11 -1 B -58 15.43385316 541.8607985
12 0 C -57 16.35159783 511.4484888
13 0 C# -56 17.32391444 482.7430908
14 0 D -55 18.35404799 455.6488031
15 0 D# -54 19.44543648 430.0752008
16 0 E -53 20.60172231 405.9369346
17 0 F -52 21.82676446 383.1534451
18 0 F# -51 23.12465142 361.6486946
19 0 G -50 24.49971475 341.3509131
20 0 G# -49 25.9565436 322.1923585
21 0 A -48 27.5 304.1090909
22 0 A# -47 29.13523509 287.0407592
23 0 B -46 30.86770633 270.9303993
24 1 C -45 32.70319566 255.7242444
25 1 C# -44 34.64782887 241.3715454
26 1 D -43 36.70809599 227.8244015
27 1 D# -42 38.89087297 215.0376004
28 1 E -41 41.20344461 202.9684673
29 1 F -40 43.65352893 191.5767226
30 1 F# -39 46.24930284 180.8243473
31 1 G -38 48.9994295 170.6754565
32 1 G# -37 51.9130872 161.0961792
33 1 A -36 55 152.0545455
34 1 A# -35 58.27047019 143.5203796
35 1 B -34 61.73541266 135.4651996
36 2 C -33 65.40639133 127.8621222
37 2 C# -32 69.29565774 120.6857727
38 2 D -31 73.41619198 113.9122008
39 2 D# -30 77.78174593 107.5188002
40 2 E -29 82.40688923 101.4842336
41 2 F -28 87.30705786 95.78836128
42 2 F# -27 92.49860568 90.41217366
43 2 G -26 97.998859 85.33772827
44 2 G# -25 103.8261744 80.54808962
45 2 A -24 110 76.02727273
46 2 A# -23 116.5409404 71.76018979
47 2 B -22 123.4708253 67.73259982
48 3 C -21 130.8127827 63.9310611
49 3 C# -20 138.5913155 60.34288635
50 3 D -19 146.832384 56.95610038
51 3 D# -18 155.5634919 53.7594001
52 3 E -17 164.8137785 50.74211682
53 3 F -16 174.6141157 47.89418064
54 3 F# -15 184.9972114 45.20608683
55 3 G -14 195.997718 42.66886414
56 3 G# -13 207.6523488 40.27404481
57 3 A -12 220 38.01363636
58 3 A# -11 233.0818808 35.8800949
59 3 B -10 246.9416506 33.86629991
60 4 C -9 261.6255653 31.96553055
61 4 C# -8 277.182631 30.17144318
62 4 D -7 293.6647679 28.47805019
63 4 D# -6 311.1269837 26.87970005
64 4 E -5 329.6275569 25.37105841
65 4 F -4 349.2282314 23.94709032
66 4 F# -3 369.9944227 22.60304342
67 4 G -2 391.995436 21.33443207
68 4 G# -1 415.3046976 20.1370224
69 4 A 0 440 19.00681818
70 4 A# 1 466.1637615 17.94004745
71 4 B 2 493.8833013 16.93314995
72 5 C 3 523.2511306 15.98276527
73 5 C# 4 554.365262 15.08572159
74 5 D 5 587.3295358 14.2390251
75 5 D# 6 622.2539674 13.43985003
76 5 E 7 659.2551138 12.68552921
77 5 F 8 698.4564629 11.97354516
78 5 F# 9 739.9888454 11.30152171
79 5 G 10 783.990872 10.66721603
80 5 G# 11 830.6093952 10.0685112
81 5 A 12 880 9.503409091
82 5 A# 13 932.327523 8.970023724
83 5 B 14 987.7666025 8.466574977
84 6 C 15 1046.502261 7.991382637
85 6 C# 16 1108.730524 7.542860794
86 6 D 17 1174.659072 7.119512548
87 6 D# 18 1244.507935 6.719925013
88 6 E 19 1318.510228 6.342764603
89 6 F 20 1396.912926 5.98677258
90 6 F# 21 1479.977691 5.650760854
91 6 G 22 1567.981744 5.333608017
92 6 G# 23 1661.21879 5.034255601
93 6 A 24 1760 4.751704545
94 6 A# 25 1864.655046 4.485011862
95 6 B 26 1975.533205 4.233287489
96 7 C 27 2093.004522 3.995691319
97 7 C# 28 2217.461048 3.771430397
98 7 D 29 2349.318143 3.559756274
99 7 D# 30 2489.01587 3.359962506
100 7 E 31 2637.020455 3.171382301
101 7 F 32 2793.825851 2.99338629
102 7 F# 33 2959.955382 2.825380427
103 7 G 34 3135.963488 2.666804009
104 7 G# 35 3322.437581 2.517127801
105 7 A 36 3520 2.375852273
106 7 A# 37 3729.310092 2.242505931
107 7 B 38 3951.06641 2.116643744
108 8 C 39 4186.009045 1.997845659
109 8 C# 40 4434.922096 1.885715199
110 8 D 41 4698.636287 1.779878137
111 8 D# 42 4978.03174 1.679981253
112 8 E 43 5274.040911 1.585691151
113 8 F 44 5587.651703 1.496693145
114 8 F# 45 5919.910763 1.412690213
115 8 G 46 6271.926976 1.333402004
116 8 G# 47 6644.875161 1.2585639
117 8 A 48 7040 1.187926136
118 8 A# 49 7458.620184 1.121252965
119 8 B 50 7902.13282 1.058321872
120 9 C 51 8372.01809 0.99892283
121 9 C# 52 8869.844191 0.942857599
122 9 D 53 9397.272573 0.889939068
123 9 D# 54 9956.063479 0.839990627
124 9 E 55 10548.08182 0.792845575
125 9 F 56 11175.30341 0.748346572
126 9 F# 57 11839.82153 0.706345107
127 9 G 58 12543.85395 0.666701002
Note that the first two octaves listed are academic. Frequencies below 20 hertz cannot be heard or reproduced by most people/sound systems. I theorize that Low Frequency Oscillations below 20hz are recognized as distinct separate audio events instead of as pitches by the brain.
If my mathematical formula or results are incorrect, please let me know. I do not possess graduate level mathematical skills nor advanced musical math knowledge.